TALC: A Simple C Language Extension For Improved

Performance and Code Maintainability

L

Jeff Keasler
Linux Cluster Institute

NCSA 2008

LLNL-PRES-403247
Prepared by LLNL under Contract DE-AC52-07NA27344

Lawrence Livermore National Laboratory

The Software Chasm

Many important HPC Moore’s law is now spurring a renaissance
applications be re- of architectural diversity in the HPC

ritten for practical reasons: marketplace:
W P : Multicore (Intel, AMD, Sun, ...)

Size of code. System on a chip (IBM BlueGene,

Additional efforts of SciCortex, ...)
validating a rewrite. The re-emergence of vector

_ - (Cray,ClearSpeed,Intel, ...)
What do you rewrite to* Graphical Units to supplement work
Impact on budget and (IBM/Sony Cell, Nvidia, ...)

deliverables. What works for one may work for
another.

L

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Many software options exist to port to new architectures

Software Solutions Architectures
System
7 Specific Sysatlecr:r;]? on
Libraries P

Existing
Software

OpenMP Multicore

A\ 4

Rapidmind GPU

Manual approach has
unacceptable footprint
in source code

CUDA Cell

= A manual rewrite would lock in one solution
= Automated transformations can generate each solution

L

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Optimization
Guidance
(optional)

Transformation
rules

Source Code

A 4

ROSE Compiler

Architecture 1

Architecture N

Vendor
Compiler

(C/C++/Fortran) (CASC/Quinlan)
""""""" Coding |
Standards M MLy t
___________ (optional) TegEmer
Research Existing Generated

LLNL-PRES-403029

\

Executable

L

Motivation

= Many large science applications achieve a small
fraction of peak performance

= Known roadblocks to performance include
« User choice of data structures
« Conservative optimization choices by compilers

= We are working on a source-to-source translator called
TALC to allow users to control these issues for mesh
based codes without modifying their source code

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Mesh Based Physics

Meshes are used to solve partial
differential equations

Meshes are often described as
a hierarchy of locality contexts

Examples of contexts include:
subdomains, patches, finite
elements and material regions

Data layout choices are often
made within locality contexts to
Increase cache performance

2D Mesh

N
\ “ Node
Element
Mesh
[:]
Elements Nodes
I . |

Concrete Copper

LLNL-PRES-403029

Fundamental Data Layouts

= Array-Like
« double x[10000] ;

double y[10000] ;
double z[10000] ;

= Struct-Like
e struct coord {

double x, vy, z;
} point[10000] ;

= Clustered-Struct

e struct coord {

double x, y ;

} point[10000] ;
double z[10000] ;

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example - Array-Like Layout ey
I —

double quarterDelta = 0.25 * deltaTime;

for (inti=0 ;i< material_length ; i++){
int index = material_mapi];
double szz = - sxx[index] - syy[index] ;

deltz[index] += quarterDelta * (vhnew[index] + v[index]) *

(dxx[index] * (sxx[index] + newSxx[i]) + dyy[index] * (syy[index] + newSyy][i]) +
dzz[index] * (szz + newSzz[i]) +

2.*dxy[index] * (txy[index] + newTxy[i]) + 2.*dxz[index] * (txz[index] + newTxz][i]) +
2.*dyz[index] * (tyz[index] + newTyz][i])) ;

delts[i] += quarterDelta * (vnew[index] + v[index]) *
(dxx[index] * sxx[index] + dyy[index] * syy[index] + dzz[index] * szz +

2. *dxy[index] * txy[index] + 2.*dxz[index] * txz[index] + 2.*dyz[index] * tyz[index]) ;

Here, each field variable occupies a separate array

LLNL-PRES-403029

Lawrence Livermore National Laboratory

Stress-Strain Work Example - Struct-Like Layout

for (inti =0 ;i< material_length ; i++){
int index = material_map[i;
double szz = - elem[index].sxx — elem[index].syy ;

elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx) +
elem[index].dyy * (elem[index].syy + materialElem[i].newSyy) +
elem[index].dzz * (szz + materialElem[i].newSzz) +
2.*elem[index].dxy * (elem[index].txy + materialElem][i].newTxy) +
2.*elem[index].dxz * (elem[index].txz + materialElem][i].newTxz) +
2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz)) ;

materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) *
(elem[index].dxx * elem[index].sxx + elem[index].dyy * elem[index].syy +
elem[index].dzz * szz + 2.*elem[index].dxy * elem[index].txy +
2.*elem[index].dxz * elem[index].txz + 2.*elem[index].dyz * elem[index].tyz) ;

}

Here, there are two contexts — mesh elements and mat erial elements

It

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example — Clustered-Struct Layout

for (inti =0 ;i< material_length ; i++){
int index = material_map[i;
double szz = - stress[index].sxx — stress[index].syy ;

deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) *

(deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx) +
deform[index].dyy * (stress[index].syy + materialStress[i].newSyy) +
deform[index].dzz * (szz + materialStress[i].newSzz) +

2. *deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) +

2. *deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) +

2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz)) ;

delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) *
(deform[index].dxx * stress[index].sxx + deform[index].dyy * stress[index].syy +
deform[index].dzz * szz + 2.*deform[index].dxy * stress[index].txy +
2.*deform[index].dxz * stress[index].txz + 2.*deform[index].dyz * stress[index].tyz) ;

Here, contexts are created for each tightly bound g roup of field arrays

It

LLNL-PRES-403029

10

Lawrence Livermore National Laboratory

Stress-Strain Work Example — Performance

stress subset

1.1

i "Itaniumé" [
"Opteron”
1,06 F "Powerh"

Worse

0,95 F

0,9

0,85

normalized time

0.8

0,75

Better

n,7
Cache Hit t;% —>

0,65

d

Array-like < » Struct-like
mem | ayout

A mesh of 12000 elements contains two sparse material subsets of
8000 and 4000 elements. The 8000 element subset is evaluated

It

1

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Stress-Strain Work Example — Cache Performance
[

Opteron Hardware Counters
L1 Cache

Data Hit
Layout Hit Count Miss Count Ratio

Array-Like 3955732080 286239697 93.3%
Intermediate 2842569424 281404535 91.0%
Struct-Like 2769568352 273753504 91.1%

= Some applications/architectures optimize best with
struct-like data layouts due to reduced register pressure
or better use of prefetch streams

L

12

LLLLLLLLLLLLLLLL

Second Example — Quadrilateral Volume 2
-
= An unstructured mesh is created for quadrilaterals
 Lattice of nodes stored as X and Y coordinate arrays

« Quadrilateral shape defined by four arrays of
nodal indices

= Wall clock run time is measured while varying
e Compilers
o Data representations (restricted pointers vs. STL)
e Data Layouts
— Separate coordinate and shape contexts

— Switch between Array-Like and Struct-Like layout
for each context

L

13

LLLLLLLLLLLLLLLL

Quadrilateral Volume Example — Performance

Quadrilateral Volume Calculation
Restricted Pointers

3500

3000

2500 +
2000 +
1500
1000 -

Time (seconds)

07 T T

@ Opteron/g++4.1.1
m Opteron/pgi6.2-3
O Opteron/path3.0

ul ai

1 2

3

4

Data Layout Choice

LLNL-PRES-403029

GNU sees good optimizations for
the first and third layout, while
PathScale sees good optimizations
for the second and fourth.

L

14

Lawrence Livermore National Laboratory

Quadrilateral Volume Example — Performance

3500

Quadrilateral Volume Calculation
Restricted Pointers

3000

2500 +
2000 +
1500
1000 -

500 -

Time (seconds)

ml am

@ Opteron/g++4.1.1
m Opteron/pgi6.2-3
O Opteron/path3.0

1 2

ul ai

3 4

Data Layout Choice

3500

Quadrilateral Volume Calculation
C++STL

3000

3 2500 |
fony
S 2000
[}
2 1500
[}
£ 1000
= 500 1

@ Opteron/g++4.1.1
m Opteron/pgi6.2-3

O Opteron/path3.0

i

2

3 4

Data Layout Choice

LLNL-PRES-403029

GNU sees good optimizations for
the first and third layout, while
PathScale sees good optimizations
for the second and fourth.

PGl sees more optimizations when
using the STL. Note that Pathscale
runs 25% slower when using the STL
for data layouts number two and four.

L

15

Lawrence Livermore National Laboratory

Struct-Like Layouts Are Not Optimal For All Architectures ey
[

= An x86 SSE enabled processor can optimize
well with unaliased aligned array-like data

* double *x = new double[10000] ;
double *y = new double[10000] ;
double *z = new double[10000] ;

« Additional compiler directives are needed throughout
the source code to indicate pointers are aligned

L

16

LLLLLLLLLLLLLLLL

Memory Alignment Is Important For Many Architectures =
T

BG/L memory throughput: afi] = b[i] + ss*c][i]

Array Size Unaligned(MB/s) Aligned(MB/s)
100 3040 6300
1000 3340 8270
10000 1290 3720
100000 1290 3720
500000 1290 1830
1000000 1280 1440

Results: Norris, Hartono, Gropp

It

17

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Compiler Directives 2
-
= Memory Alignment
 Library calls such as posix_memalign()
« Compile line options such as —Mcache_align
« Compiler directives such as
— __alignx()
— _declspec(align())
— ___attribute(align())
— ___assume_aligned()
= Alias control
* For C/C++ use restrict or __restrict___

L

18

LLLLLLLLLLLLLLLL

Roadblocks to Data Layout Flexibility =
T

= Users usually must rewrite their software to switch between Array-
Like and Struct-Like data layouts or to take advantage of compiler
directives

* This makes it difficult to adapt software to compensate for
performance idiosyncrasies of different compilers or memory
subsystems

« Software ends up being tuned for a specific hardware platform
and compiler environment

= Dynamic Memory Management is often supported as a library
rather than an integral part of the compiler

 Compiler cannot generate aggressive optimizations due to
Incomplete knowledge of data layout, memory alignment, and
Inter-relations among heap pointers

19

LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC

= TALC is a source-to-source translator that allows users
to direct compiler optimizations through the use of a
schema file

= The schema file provides a higher level of type
iInformation about the problem being solved

= This enables a tight coordination between run-time
memory allocation and compile-time code generation,
which are currently somewhat disjoint

L

20
LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC - Allowing User Directed Compiler Optimizations
T

= The Schema file contains high level information about

data layouts

Quadrilateral Schema 1

View nodes
Field x
Field y

View

View elems
Relation:nodes nl1l n2 n3 n4
View

Quadrilateral Schema 2

View nodes
Field x y
View

View elems
Relation:nodes nl1 n2 n3 n4
View

LLNL-PRES-403029

21

TALC Schema

elems
— — —
inflow —» . . — outflow
—_ — -
tube

Shock Tube Schema

View mesh

View elems
Field mass momentum energy
Field pressure
View tube

Relation:faces upWindFace downWindFace

View

View

View faces
Field fluxO flux1 flux2
Realtion:elems upWindElem downWindElem
View
View

It

22

LLNL-PRES-403029 Lawrence Livermore National Laboratory

TALC

= |n addition to controlling data layouts via a schema file,
source-to-source translation allows us to

« Align variables when they are allocated on heap

* Apply machine specific compiler directives to
iIndicate cache alignment and alias restriction

= Features that allow this to work for us
« Consistent naming of Field arrays and contexts

« Hierarchical nature of context allocation already in
place in many of our scientific codes

 Intimate familiarity with the structure of our codes

It

23

LLLLLLLLLLLLLLLL

Potential Roadblocks

= Libraries

* Most libraries expect passed arrays to have a
specific memory layout (i.e. stride one array)

« Even if compiling library source code, the user would
need to understand the structure of the library
software to create an appropriate schema

= /O

« Since many I/O operations are implemented using
libraries, the same problem applies as above.

* Alibrary like MPI that provides a memory layout
iInterface may be automatically transformable

L

24

LLLLLLLLLLLLLLLL

Future Work

= Demonstration of Rapidmind backend
« Will work on select loops at first, low performance

= Full thread support
 Demonstration capability is already there

= Structured Indexsets

Schema MVmul(is *vecSpace, PntrR vy, A, x) {
View VecSpace:row:col while(vecSpace->(“row”)) {

Field A y=00;

Field:row y while(vecSpace->(“col”)) {

Field:col x y += A*X;
View }

}
}

25

LLNL-PRES-403029 Lawrence Livermore National Laboratory

Conclusion

= A diversity of hardware architectures are being
Introduced simultaneously (Multi-core, NUMA,
GPGPU/vector coprocessors)

= A low-impact change in our programming model may
provide a unified way of running effectively on a
diversity of system architectures

= A data-layout compiler has been written to explore this
Issue using the ROSE source-to-source translator

It

26
LLNL-PRES-403029 Lawrence Livermore National Laboratory

